Convergence Behaviour of Lms - Typealgorithms for Adaptive Noise Con - Trol in Noisy Doppler
نویسندگان
چکیده
ALGORITHMS FOR ADAPTIVE NOISE CONTROL IN NOISY DOPPLER ENVIRONMENTS ROBERT W. STEWART, STEPHAN WEISS, DAVID H. CRAWFORD Signal Processing Division, Dept. of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, Scotland, UK Abstract. This paper discusses the convergence and tracking behaviour of LMStype algorithms in a certain type of environment, which is characterised by a Doppler shift in frequency between the two signals available to the algorithm and rapid variations in signal power. We show the linear time-varying characteristics of the underlying system and derive optimum trajectories to which we can compare the adaptation and tracking ability of rst order LMS and NLMS adaptive lters. We also present simulations using higher lter orders and real world noise, for which particular emphasis is put on the presence of observation noise. An excursion into the theory of non-stationary convergence and tracking of adaptive algorithms provides justi cation for the observed behaviour of the algorithms.
منابع مشابه
On the effect of low-quality node observation on learning over incremental adaptive networks
In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....
متن کاملDistributed Incremental Least Mean-Square for Parameter Estimation using Heterogeneous Adaptive Networks in Unreliable Measurements
Adaptive networks include a set of nodes with adaptation and learning abilities for modeling various types of self-organized and complex activities encountered in the real world. This paper presents the effect of heterogeneously distributed incremental LMS algorithm with ideal links on the quality of unknown parameter estimation. In heterogeneous adaptive networks, a fraction of the nodes, defi...
متن کاملAn Optimized Online Secondary Path Modeling Method for Single-Channel Feedback ANC Systems
This paper proposes a new method for online secondary path modeling in feedback active noise control (ANC) systems. In practical cases, the secondary path is usually time-varying. For these cases, online modeling of secondary path is required to ensure convergence of the system. In literature the secondary path estimation is usually performed offline, prior to online modeling, where in the prop...
متن کاملOptimization Capabilities of LMS and SMI Algorithm for Smart Antenna Systems (RESEARCH NOTE)
In the present paper convergence characteristics of Sample matrix Inversion (SMI) and Least Mean Square (LMS) adaptive beam-forming algorithms (ABFA) are compared for a Smart Antenna System (SAS) in a multipath environment. SAS are employed at base stations for radiating narrow beams at the desired mobile users. The ABFA are incorporated in the digital signal processors for adjusting the weight...
متن کاملEfficient algorithm for Speech Enhancement using Adaptive filter
The present system of speech enhancement is developing by adaptive filtering approach in digital filters. The adaptive filter utilizes the least mean square algorithm for noise removal, but in practical application of LMS algorithm, a key parameter is the step size. As it is known, if the step size is large, the convergence rate of LMS algorithm will be rapid, but the steady-state mean square e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007